$S O(6,2)$ dynamical symmetry of the $S U(2)$ MIC-Kepler problem

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys. A: Math. Gen. 32 L249
(http://iopscience.iop.org/0305-4470/32/23/101)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.105
The article was downloaded on 02/06/2010 at 07:33

Please note that terms and conditions apply.

LETTER TO THE EDITOR

$S O(6,2)$ dynamical symmetry of the $S U(2)$ MIC-Kepler problem

M V Pletyukhov and E A Tolkachev
Institute of Physics, National Academy of Sciences of Belarus, Scorina av., 70, Minsk 220072, Belarus
E-mail: plet@dragon.bas-net.by and tea@dragon.bas-net.by

Received 21 January 1999, in final form 13 April 1999

Abstract. It is shown that the full group of dynamical symmetry for the 5D $S U(2)$ MIC-Kepler problem is $S O(6,2)$.

It is well known that both nonrelativistic and relativistic quantum Kepler problems (with or without magnetic charges) can be treated in the terms of the dynamical group $S O(4,2)[1,2]$. The dynamical symmetry properties of the Kepler and MIC-Kepler [3] problems have been considered in detail in [4].

Non-Abelian generalization of the nonrelativistic MIC-Kepler and Kepler-monopole problems is possible in certain higher dimensions [5]. So, the $S U(2)$ generalization is available in 5D Euclidean space. It is known [6-8] that the 5D MIC-Kepler (Kepler) model on the background of the $S U(2)$ Yang-Mills instantonic potential can be formulated in terms of an 8D harmonic (singular) oscillator. Further consideration of this correspondence is motivated because the complicated dynamics in such a topologically nontrivial background as the YangMills instanton (which is of great interest in physics [9]) can be treated in merely algebraic terms. In $[6,10]$ it has been shown that $S U(2)$ Kepler problem manifests $S O$ (6) symmetry. On the other hand, it possesses the $S O(1,2)(S U(1,1))$ dynamical symmetry as does its MIC-Kepler counterpart [8].

In this letter we demonstrate that the full dynamical group of the 5D $S U$ (2) MIC-Kepler problem is $S O(6,2)$ (the Kepler problem does not possess such a larger symmetry). We formulate this symmetry in terms of the 8D harmonic oscillator creation and annihilation operators and show how to derive the known $S O$ (6) symmetry (it is not the subgroup!) using such notions.

We recall that the 8D harmonic (singular) oscillator eigenproblem is described as

$$
\begin{array}{ll}
H_{0} \Psi_{0}^{(8)}=E_{0} \Psi_{0}^{(8)} & H_{0}=-2 \frac{\partial^{2}}{\partial \xi_{i} \partial \xi_{i}^{*}}+\frac{\omega^{2}}{2} \xi_{i}^{*} \xi_{i} \\
H \Psi^{(8)}=E \Psi^{(8)} & H=H_{0}-\frac{2 K^{2}}{\xi_{i}^{*} \xi_{i}} \quad i=1,2,3,4 \tag{2}
\end{array}
$$

with

$$
\begin{equation*}
\boldsymbol{K}^{2}=K_{\alpha} K_{\alpha} \quad \alpha=1,2,3 \tag{3}
\end{equation*}
$$

where K_{a} in terms of the auxiliary coordinates

$$
\begin{equation*}
z_{1}=-\frac{\operatorname{Im} \xi_{2}}{\operatorname{Re} \xi_{1}} \quad z_{2}=\frac{\operatorname{Re} \xi_{2}}{\operatorname{Re} \xi_{1}} \quad z_{3}=-\frac{\operatorname{Im} \xi_{1}}{\operatorname{Re} \xi_{1}} \tag{4}
\end{equation*}
$$

is expressed as

$$
\begin{equation*}
K_{\alpha}=\frac{\mathrm{i}}{2}\left(z_{\alpha} z_{\beta} \frac{\partial}{\partial z_{\beta}}+\frac{\partial}{\partial z_{\alpha}}-\varepsilon_{\alpha \beta \gamma} z_{\beta} \frac{\partial}{\partial z_{\gamma}}\right) . \tag{5}
\end{equation*}
$$

Under certain conditions it is equivalent to the 5D $S U(2)$ MIC-Kepler (Kepler) problem

$$
\begin{array}{ll}
\mathcal{H}_{0} \varphi_{0}^{(5)}=\mathcal{E}_{0} \varphi_{0}^{(5)} & \mathcal{H}_{0}=\frac{\pi_{\mu}^{2}}{2}+\frac{l(l+1)}{2 R^{2}}-\frac{\kappa}{R} \\
\mathcal{H} \varphi^{(5)}=\mathcal{E} \varphi^{(5)} & \mathcal{H}=\mathcal{H}_{0}-\frac{l(l+1)}{2 R^{2}} \tag{7}
\end{array}
$$

where the covariant derivative $\pi_{\mu}=-\mathrm{i} \partial_{\mu}-A_{\mu}^{a} \Lambda_{a}^{2 l+1}$ contains $S U$ (2) Yang-Mills instanton [9] as the gauge potential defined due to

$$
A_{\mu}^{a} d r_{\mu}=\frac{1}{R\left(R+r_{0}\right)}\left(-r_{4} d r_{a}+r_{a} d r_{4}-\varepsilon_{a b c} r_{b} d r_{c}\right)
$$

and $\Lambda_{a}^{2 l+1}$ are the generators of the $(2 l+1)$-dimensional representation of $S U(2)$.
These conditions are:
(1) the coordinates of 5D Euclidean space are expressed through those of 8 D space by means of the Hurwitz transformation

$$
\begin{align*}
& r_{\mu}=\xi^{*} \gamma_{\mu} \xi \\
& \gamma_{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad \gamma_{\alpha}=\left(\begin{array}{cc}
0 & -\mathrm{i} \sigma_{\alpha} \\
i \sigma_{\alpha} & 0
\end{array}\right) \quad \gamma_{4}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \tag{8}
\end{align*}
$$

which possesses the property $R=\xi^{*} \xi$;
(2) the eigenvalues of one problem are expressed through the parameters of another one and vice versa:

$$
\begin{array}{lc}
E_{0}=4 \kappa & \omega^{2}=-8 \mathcal{E}_{0} \\
E=4 \kappa & \omega^{2}=-8 \mathcal{E} \tag{10}
\end{array}
$$

(3) the equivariance condition

$$
\begin{equation*}
\boldsymbol{K}^{2} \Psi^{(8)}=l(l+1) \Psi^{(8)} \tag{11}
\end{equation*}
$$

is supposed to hold. It allows us to establish the correspondence between the respective Hilbert spaces

$$
\begin{equation*}
\Psi^{(8)}\left(\xi_{i}, \xi_{i}^{*}\right)=\sum_{m, m^{\prime}} D_{m m^{\prime}}^{l}(\boldsymbol{z}) \varphi_{m m^{\prime}}^{(5)}\left(r_{\mu}\right) . \tag{12}
\end{equation*}
$$

Here $D_{m m^{\prime}}^{l}(\boldsymbol{z})$ are the $S U(2)$ Wigner functions expressed through the vector parameters which are related to the Euler angles as

$$
\begin{align*}
& z_{1}=\tan \frac{\theta}{2} \cos \frac{\varphi-\psi}{2} / \cos \frac{\varphi+\psi}{2} \\
& z_{2}=\tan \frac{\theta}{2} \sin \frac{\varphi-\psi}{2} / \cos \frac{\varphi+\psi}{2} \tag{13}\\
& z_{3}=\tan \frac{\varphi+\psi}{2}
\end{align*}
$$

The 8D oscillator's annihilation and creation operators

$$
\begin{array}{rlrl}
a_{i} & =\sqrt{\frac{\omega}{2}}\left(\xi_{i}+\frac{1}{\omega} \frac{\partial}{\partial \xi_{i}^{*}}\right) & b_{i} & =\sqrt{\frac{\omega}{2}}\left(\xi_{i}^{*}+\frac{1}{\omega} \frac{\partial}{\partial \xi_{i}}\right) \\
a_{i}^{\dagger}=\sqrt{\frac{\omega}{2}}\left(\xi_{i}^{*}-\frac{1}{\omega} \frac{\partial}{\partial \xi_{i}}\right) & b_{i}^{\dagger} & =\sqrt{\frac{\omega}{2}}\left(\xi_{i}-\frac{1}{\omega} \frac{\partial}{\partial \xi_{i}^{*}}\right) \tag{15}
\end{array}
$$

satisfy the standard relations

$$
\begin{equation*}
\left[a_{i}, a_{j}^{\dagger}\right]=\left[b_{i}, b_{j}^{\dagger}\right]=\delta_{i j} . \tag{16}
\end{equation*}
$$

Their quadratic combinations

$$
\begin{array}{ll}
R_{i j}=a_{i}^{\dagger} a_{j}+b_{i} b_{j}^{\dagger} & L_{i j}=a_{i}^{\dagger} a_{j}-b_{i} b_{j}^{\dagger} \\
N_{i j}=b_{i} a_{j}+a_{i}^{\dagger} b_{j}^{\dagger} & Q_{i j}=\mathrm{i}\left(b_{i} a_{j}-a_{i}^{\dagger} b_{j}^{\dagger}\right) \tag{18}
\end{array}
$$

constitute the algebra which is isomorphic to $u(4,4)$

$$
\begin{array}{lc}
{\left[L_{i j}, R_{k n}\right]=\delta_{k j} R_{i n}-\delta_{i n} R_{k j}} & {\left[L_{i j}, Q_{k n}\right]=\delta_{k j} Q_{i n}-\delta_{i n} Q_{k j}} \\
{\left[L_{i j}, N_{k n}\right]=\delta_{k j} N_{i n}-\delta_{i n} N_{k j}} & {\left[R_{i j}, Q_{k n}\right]=-\mathrm{i}\left(\delta_{k j} N_{i n}+\delta_{i n} N_{k j}\right)} \\
{\left[R_{i j}, N_{k n}\right]=\mathrm{i}\left(\delta_{k j} Q_{i n}+\delta_{i n} Q_{k j}\right)} & {\left[Q_{i j}, N_{k n}\right]=\mathrm{i}\left(\delta_{k j} R_{i n}+\delta_{i n} R_{k j}\right)} \\
{\left[L_{i j}, L_{k n}\right]=\delta_{k j} L_{i n}-\delta_{i n} L_{k j}} & {\left[R_{i j}, R_{k n}\right]=\delta_{k j} L_{i n}-\delta_{i n} L_{k j}} \\
{\left[Q_{i j}, Q_{k n}\right]=-\delta_{k j} L_{i n}+\delta_{i n} L_{k j}} & {\left[N_{i j}, N_{k n}\right]=-\delta_{k j} L_{i n}+\delta_{i n} L_{k j} .}
\end{array}
$$

We introduce the operators

$$
\begin{align*}
\mathcal{L}_{\mu \nu} & =\frac{1}{2} \Omega_{\mu \nu}^{i j} L_{i j}=\mathcal{J}_{\mu \nu}=\mathrm{i}\left[R \pi_{\mu}, R \pi_{\nu}\right] \\
\mathcal{L}_{\mu 0} & =-\frac{1}{2} \gamma_{\mu}^{i j} N_{i j}=\mathcal{A}_{\mu}=\frac{1}{2}\left(\mathcal{Y}_{\mu}-r_{\mu}\right) \\
\mathcal{L}_{\mu 6} & =\frac{1}{2} \gamma_{\mu}^{i j} R_{i j}=\mathcal{M}_{\mu}=\frac{1}{2}\left(\mathcal{Y}_{\mu}+r_{\mu}\right) \\
\mathcal{L}_{\mu 7} & =-\frac{1}{2} \gamma_{\mu}^{i j} Q_{i j}=\Gamma_{\mu}=R \pi_{\mu} \\
\mathcal{L}_{70} & =\frac{1}{2} \delta^{i j} R_{i j}=\Gamma_{0}=\frac{1}{2}\left(R \pi^{2}+\frac{K^{2}}{R}+R\right) \tag{19}\\
\mathcal{L}_{76} & =-\frac{1}{2} \delta^{i j} N_{i j}=\Gamma_{6}=\frac{1}{2}\left(R \pi^{2}+\frac{K^{2}}{R}-R\right) \\
\mathcal{L}_{60} & =-\frac{1}{2} \delta^{i j} Q_{i j}=\mathcal{T}=r_{\mu} \pi_{\mu}-2 \mathrm{i}
\end{align*}
$$

with

$$
\begin{equation*}
\mathcal{Y}_{\mu}=r_{\mu}\left(\pi^{2}+\frac{\boldsymbol{K}^{2}}{R^{2}}\right)+\left\{\pi_{\lambda}, \mathcal{J}_{\lambda \mu}\right\} \tag{20}
\end{equation*}
$$

where $\gamma_{\mu}^{i j}$ are the components of the matrices γ_{μ} defined in (8) and $\Omega_{\mu \nu}^{i j}=\left(\frac{1}{2 i}\left[\gamma_{\mu}, \gamma_{\nu}\right]\right)^{i j}$. The brackets $[\cdot, \cdot]$ and $\{\cdot, \cdot\}$ denote the commutator and anticommutator, respectively. (When written in 5D terms, the operators (19) contain the auxiliary coordinates (4) within \boldsymbol{K}^{2}, i.e. the equivariance condition has not been applied yet! But it does not matter, because \boldsymbol{K}^{2} commutes with all of $\mathcal{L}_{a b}$.)

The operators (19) satisfy $S O(6,2)$ commutation relations

$$
\begin{align*}
& {\left[\mathcal{L}_{a b}, \mathcal{L}_{c d}\right]=\mathrm{i}\left(g_{b c} \mathcal{L}_{d a}-g_{d a} \mathcal{L}_{b c}+g_{d b} \mathcal{L}_{a c}-g_{a c} \mathcal{L}_{d b}\right)} \\
& \left(g_{a b}\right)=\operatorname{diag}(-1,1,1,1,1,1,1,-1) \tag{21}\\
& a, b, c, d=0, \ldots, 7
\end{align*}
$$

We assert that $S O(6,2)$ is the group of dynamical symmetry of the 5D $S U(2)$ Kepler problem because it contains the subgroup $S O(1,2)$ generated by $\left(\Gamma_{0}, \Gamma_{6}, \mathcal{T}\right)$

$$
\begin{equation*}
\left[\Gamma_{0}, \Gamma_{6}\right]=\mathrm{i} \mathcal{T} \quad\left[\Gamma_{6}, \mathcal{T}\right]=-\mathrm{i} \Gamma_{0} \quad\left[\mathcal{T}, \Gamma_{0}\right]=\mathrm{i} \Gamma_{6} \tag{22}
\end{equation*}
$$

which is isomorphic to the group generated by

$$
\begin{align*}
& H_{0}=2\left(\Gamma_{0}+\Gamma_{6}\right)+\frac{\omega^{2}}{2}\left(\Gamma_{0}-\Gamma_{6}\right) \\
& B_{20}^{\dagger}=-\mathrm{i}\left(\frac{\omega^{2}}{2}\left(\Gamma_{0}-\Gamma_{6}\right)-2\left(\Gamma_{0}+\Gamma_{6}\right)-2 \mathrm{i} \omega \mathcal{T}\right) \tag{23}\\
& B_{20}=\mathrm{i}\left(\frac{\omega^{2}}{2}\left(\Gamma_{0}-\Gamma_{6}\right)-2\left(\Gamma_{0}+\Gamma_{6}\right)+2 \mathrm{i} \omega \mathcal{T}\right)
\end{align*}
$$

with $S O(1,2)$ commutation relations

$$
\begin{equation*}
\left[\frac{H_{0}}{2 \omega}, \frac{B_{20}^{\dagger}}{2 \omega}\right]=\mathrm{i} \frac{B_{20}^{\dagger}}{2 \omega} \quad\left[\frac{H_{0}}{2 \omega}, \frac{B_{20}}{2 \omega}\right]=-\mathrm{i} \frac{B_{20}}{2 \omega} \quad\left[\frac{B_{20}}{2 \omega}, \frac{B_{20}^{\dagger}}{2 \omega}\right]=2 \frac{H_{0}}{2 \omega} . \tag{24}
\end{equation*}
$$

The algebra (23) generates the spectrum of the 8 D harmonic oscillator

$$
\begin{equation*}
E_{0 N}=\omega(N+4) \quad N=0,1,2, \ldots \tag{25}
\end{equation*}
$$

and due to the relation (10) one can obtain the spectrum of the 5D $S U$ (2) MIC-Kepler problem

$$
\begin{equation*}
\mathcal{E}_{0 N}=-\frac{\kappa^{2}}{2\left(\frac{N}{2}+2\right)^{2}} \tag{26}
\end{equation*}
$$

In the case of the 5D $S U(2)$ Kepler problem [8] the generators

$$
\begin{equation*}
\Gamma_{0}^{\prime}=\frac{1}{2}\left(R \pi^{2}+R\right) \quad \Gamma_{6}^{\prime}=\frac{1}{2}\left(R \pi^{2}-R\right) \quad \mathcal{T}^{\prime}=r_{\mu} \pi_{\mu}-2 \mathrm{i} \tag{27}
\end{equation*}
$$

can be introduced. They satisfy the $S O(1,2)$ commutation relations

$$
\begin{equation*}
\left[\Gamma_{0}^{\prime}, \Gamma_{6}^{\prime}\right]=\mathrm{i} \mathcal{T}^{\prime} \quad\left[\Gamma_{6}^{\prime}, \mathcal{T}^{\prime}\right]=-\mathrm{i} \Gamma_{0}^{\prime} \quad\left[\mathcal{T}^{\prime}, \Gamma_{0}^{\prime}\right]=\mathrm{i} \Gamma_{6}^{\prime} \tag{28}
\end{equation*}
$$

and are related to the generators $H, B_{2}^{\dagger} \equiv B_{20}^{\dagger}-\mathrm{i} \frac{2 l(l+1)}{\xi^{*} \xi}, B_{2} \equiv B_{20}+\mathrm{i} \frac{2 l(l+1)}{\xi^{*} \xi}$, satisfying

$$
\begin{equation*}
\left[\frac{H}{2 \omega}, \frac{B_{2}^{\dagger}}{2 \omega}\right]=\mathrm{i} \frac{B_{2}^{\dagger}}{2 \omega} \quad\left[\frac{H}{2 \omega}, \frac{B_{2}}{2 \omega}\right]=-\mathrm{i} \frac{B_{2}}{2 \omega} \quad\left[\frac{B_{2}}{2 \omega}, \frac{B_{2}^{\dagger}}{2 \omega}\right]=2 \frac{H}{2 \omega} \tag{29}
\end{equation*}
$$

as

$$
\begin{align*}
& H=2\left(\Gamma_{0}^{\prime}+\Gamma_{6}^{\prime}\right)+\frac{\omega^{2}}{2}\left(\Gamma_{0}^{\prime}-\Gamma_{6}^{\prime}\right) \\
& B_{2}^{\dagger}=-\mathrm{i}\left(\frac{\omega^{2}}{2}\left(\Gamma_{0}^{\prime}-\Gamma_{6}^{\prime}\right)-2\left(\Gamma_{0}^{\prime}+\Gamma_{6}^{\prime}\right)-2 \mathrm{i} \omega \mathcal{T}^{\prime}\right) \tag{30}\\
& B_{2}=\mathrm{i}\left(\frac{\omega^{2}}{2}\left(\Gamma_{0}^{\prime}-\Gamma_{6}^{\prime}\right)-2\left(\Gamma_{0}^{\prime}+\Gamma_{6}^{\prime}\right)+2 \mathrm{i} \omega \mathcal{T}^{\prime}\right)
\end{align*}
$$

By means of the algebra (30) and the relation (10) the spectrum of the 5D $S U$ (2) Kepler problem can be derived, as done recently in [8]. However, the group $S O(1,2)$ generated by (28) cannot be extended up to $S O(6,2)$ as in the case of the ' 8 D harmonic oscillator-5D $S U(2)$ MIC-Kepler problem'. The situation is quite similar to that taking place in lower-dimensional consideration: the '4D harmonic oscillator-3D MIC-Kepler problem' [1].

In conclusion we show how one can derive the $S O(6)$ 'hidden' symmetry $[6,10]$ using the notation of (19). Notice that

$$
\begin{align*}
\mathcal{Y}_{\mu} & =r_{\mu}\left(\pi^{2}+\frac{K^{2}}{R^{2}}-\frac{2 \kappa}{R}\right)+\frac{2 \kappa r_{\mu}}{R}+\left\{\pi_{\lambda}, \mathcal{J}_{\lambda \mu}\right\} \\
& =2 r_{\mu} \mathcal{H}_{0}+\frac{2 \kappa r_{\mu}}{R}+\left\{\pi_{\lambda}, \mathcal{J}_{\lambda \mu}\right\} \tag{31}
\end{align*}
$$

Then, one can define the operators

$$
\begin{align*}
\mathcal{D}_{\mu} & =\frac{1}{2} \mathcal{Y}_{\mu}-r_{\mu} \mathcal{H}_{0}=\frac{1}{2}\left\{\pi_{\lambda}, \mathcal{J}_{\lambda \mu}\right\}+\frac{\kappa r_{\mu}}{R} \\
& =\frac{\mathcal{M}_{\mu}+\mathcal{A}_{\mu}}{2}+\frac{\mathcal{M}_{\mu}-\mathcal{A}_{\mu}}{2}\left(-2 \mathcal{H}_{0}\right) \tag{32}
\end{align*}
$$

which satisfy

$$
\begin{equation*}
\left[\mathcal{D}_{\mu}, \mathcal{D}_{\nu}\right]=\mathrm{i} \mathcal{J}_{\mu \nu}\left(-2 \mathcal{H}_{0}\right) \tag{33}
\end{equation*}
$$

or for the fixed energy level $\mathcal{H}_{0}=\mathcal{E}_{0}$ one can introduce

$$
\begin{equation*}
\mathcal{D}_{\mu}^{\prime}=\frac{\mathcal{D}_{\mu}}{\sqrt{-2 \mathcal{E}_{0}}} \tag{34}
\end{equation*}
$$

which fit

$$
\begin{equation*}
\left[\mathcal{D}_{\mu}^{\prime}, \mathcal{D}_{\nu}^{\prime}\right]=\mathrm{i} \mathcal{J}_{\mu \nu} \tag{35}
\end{equation*}
$$

The operators (34) along with $\mathcal{J}_{\mu \nu}$ constitute the algebra $S O$ (6).
The operators (19) generating the energy spectrum may be useful in many particle problems with quadrupole interaction manifesting $S O$ (5) symmetry, for example in nuclear physics [11].

References

[1] Barut A and Bornzin G 1971 J. Math. Phys. 12841
[2] Barut A and Raczka R 1977 Theory of Group Representations and Applications (Warszawa: PWN—Polish Scientific Publishers)
[3] Cisneros A and McIntosh H 1969 J. Math. Phys. 10277
[4] Pris' I and Tolkachev E 1991 Sov. J. Nucl. Phys. 54582
[5] Iwai T 1990 J. Geom. Phys. 7507
[6] Iwai T and Sunako T 1996 J. Geom. Phys. 20250
[7] Mardoyan L, Sissakian A and Ter-Antonyan V 1997 8D oscillator as a hidden $S U$ (2)-monopole Preprint hepth/9712235
[8] Pletyukhov M and Tolkachev E 1999 J. Math. Phys. 4093
[9] Belavin A et al 1975 Phys. Lett. B 5985 Yang C N 1978 J. Math. Phys. 19320
[10] Mardoyan L, Sissakian A and Ter-Antonyan V 1998 Hidden symmetry of the Yang-Coulomb system Preprint hep-th/9803010
[11] Arima A and Iachello F 1976 Ann. Phys. 99253
Georgieva A et al 1986 Int. J. Theor. Phys. 251253
Quesne C 1986 J. Phys. A: Math. Gen. 217

