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Abstract. It is shown that the full group of dynamical symmetry for the 5DSU(2) MIC-Kepler
problem isSO(6, 2).

It is well known that both nonrelativistic and relativistic quantum Kepler problems (with or
without magnetic charges) can be treated in the terms of the dynamical groupSO(4, 2) [1,2].
The dynamical symmetry properties of the Kepler and MIC-Kepler [3] problems have been
considered in detail in [4].

Non-Abelian generalization of the nonrelativistic MIC-Kepler and Kepler-monopole
problems is possible in certain higher dimensions [5]. So, theSU(2) generalization is available
in 5D Euclidean space. It is known [6–8] that the 5D MIC-Kepler (Kepler) model on the
background of theSU(2) Yang–Mills instantonic potential can be formulated in terms of an
8D harmonic (singular) oscillator. Further consideration of this correspondence is motivated
because the complicated dynamics in such a topologically nontrivial background as the Yang–
Mills instanton (which is of great interest in physics [9]) can be treated in merely algebraic
terms. In [6, 10] it has been shown thatSU(2) Kepler problem manifestsSO(6) symmetry.
On the other hand, it possesses theSO(1, 2) (SU(1, 1)) dynamical symmetry as does its
MIC-Kepler counterpart [8].

In this letter we demonstrate that the full dynamical group of the 5DSU(2) MIC-Kepler
problem isSO(6, 2) (the Kepler problem does not possess such a larger symmetry). We
formulate this symmetry in terms of the 8D harmonic oscillator creation and annihilation
operators and show how to derive the knownSO(6) symmetry (it is not the subgroup!) using
such notions.

We recall that the 8D harmonic (singular) oscillator eigenproblem is described as

H09
(8)
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whereKa in terms of the auxiliary coordinates

z1 = − Im ξ2

Reξ1
z2 = Reξ2

Reξ1
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Reξ1
(4)

is expressed as
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∂

∂zβ
+
∂

∂zα
− εαβγ zβ ∂

∂zγ

)
. (5)

Under certain conditions it is equivalent to the 5DSU(2) MIC-Kepler (Kepler) problem

H0ϕ
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where the covariant derivativeπµ = −i∂µ−Aaµ32l+1
a containsSU(2)Yang–Mills instanton [9]

as the gauge potential defined due to

Aaµdrµ =
1

R(R + r0)
(−r4dra + radr4 − εabcrbdrc)

and32l+1
a are the generators of the(2l + 1) -dimensional representation ofSU(2).

These conditions are:

(1) the coordinates of 5D Euclidean space are expressed through those of 8D space by means
of the Hurwitz transformation

rµ = ξ ∗γµξ
γ0 =

(
1 0
0 −1

)
γα =

(
0 −iσα
iσα 0

)
γ4 =

(
0 1
1 0

)
(8)

which possesses the propertyR = ξ ∗ξ ;
(2) the eigenvalues of one problem are expressed through the parameters of another one and

vice versa:

E0 = 4κ ω2 = −8E0 (9)

E = 4κ ω2 = −8E (10)

(3) the equivariance condition

K29(8) = l(l + 1)9(8) (11)

is supposed to hold. It allows us to establish the correspondence between the respective
Hilbert spaces
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∗
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(5)
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HereDl
mm′(z) are theSU(2) Wigner functions expressed through the vector parameters

which are related to the Euler angles as
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The 8D oscillator’s annihilation and creation operators
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satisfy the standard relations

[ai, a
†
j ] = [bi, b

†
j ] = δij . (16)

Their quadratic combinations
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†
j Lij = a†
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j (17)
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†
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i b
†
j ) (18)

constitute the algebra which is isomorphic tou(4, 4)

[Lij , Rkn] = δkjRin − δinRkj [Lij ,Qkn] = δkjQin − δinQkj

[Lij , Nkn] = δkjNin − δinNkj [Rij ,Qkn] = −i(δkjNin + δinNkj )
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[Lij , Lkn] = δkjLin − δinLkj [Rij , Rkn] = δkjLin − δinLkj
[Qij ,Qkn] = −δkjLin + δinLkj [Nij , Nkn] = −δkjLin + δinLkj .

We introduce the operators
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with
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(
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+ {πλ,Jλµ} (20)

whereγ ijµ are the components of the matricesγµ defined in (8) and�ijµν = ( 1
2i [γµ, γν ])

ij .
The brackets [·, ·] and{·, ·} denote the commutator and anticommutator, respectively. (When
written in 5D terms, the operators (19) contain the auxiliary coordinates (4) withinK2, i.e. the
equivariance condition has not been applied yet! But it does not matter, becauseK2 commutes
with all of Lab.)

The operators (19) satisfySO(6, 2) commutation relations

[Lab,Lcd ] = i(gbcLda − gdaLbc + gdbLac − gacLdb)
(gab) = diag(−1, 1, 1, 1, 1, 1, 1,−1)

a, b, c, d = 0, . . . ,7.

(21)

We assert thatSO(6, 2) is the group of dynamical symmetry of the 5DSU(2) Kepler
problem because it contains the subgroupSO(1, 2) generated by(00, 06, T )

[00, 06] = iT [06, T ] = −i00 [T , 00] = i06 (22)
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which is isomorphic to the group generated by

H0 = 2(00 + 06) +
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The algebra (23) generates the spectrum of the 8D harmonic oscillator

E0N = ω(N + 4) N = 0, 1, 2, . . . (25)

and due to the relation (10) one can obtain the spectrum of the 5DSU(2)MIC-Kepler problem

E0N = − κ2

2(N2 + 2)2
. (26)

In the case of the 5DSU(2) Kepler problem [8] the generators
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can be introduced. They satisfy theSO(1, 2) commutation relations
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(30)

By means of the algebra (30) and the relation (10) the spectrum of the 5DSU(2) Kepler
problem can be derived, as done recently in [8]. However, the groupSO(1, 2) generated by
(28) cannot be extended up toSO(6, 2) as in the case of the ‘8D harmonic oscillator–5DSU(2)
MIC-Kepler problem’. The situation is quite similar to that taking place in lower-dimensional
consideration: the ‘4D harmonic oscillator–3D MIC-Kepler problem’ [1].

In conclusion we show how one can derive theSO(6) ‘hidden’ symmetry [6, 10] using
the notation of (19). Notice that

Yµ = rµ
(
π2 +
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R2
− 2κ

R

)
+

2κrµ
R

+ {πλ,Jλµ}

= 2rµH0 +
2κrµ
R

+ {πλ,Jλµ}. (31)
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Then, one can define the operators

Dµ = 1

2
Yµ − rµH0 = 1

2
{πλ,Jλµ} + κrµ

R

= Mµ +Aµ
2

+
Mµ −Aµ

2
(−2H0) (32)

which satisfy

[Dµ,Dν ] = iJµν(−2H0) (33)

or for the fixed energy levelH0 = E0 one can introduce

D′µ =
Dµ√−2E0

(34)

which fit

[D′µ,D′ν ] = iJµν. (35)

The operators (34) along withJµν constitute the algebraSO(6).
The operators (19) generating the energy spectrum may be useful in many particle problems

with quadrupole interaction manifestingSO(5) symmetry, for example in nuclear physics [11].
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